Rochelle ztlpljea
About
-
Posted Questions
Posted Answers
Answer
Unfortunately, most research studies involving heavy strength training are carried out by lab rats who have no clue how to properly squat and demonstrate even greater incompetence when it comes to coaching these basic movements. I’ve actually had the opportunity to witness many kinesiology investigations at university settings and to suggest there is a lack of proper coaching and cuing is an understatement. The fact that ATG squats appear superior to parallel or 90 degree squats during these investigations can be traced back to improper execution of the squat, namely lack of posterior chain activation due to faulty hip hinge mechanics.
Because most individuals do not hinge adequately during the squat (unless properly instructed), the glutes and hamstrings are nearly dormant until excessive depth is reached. In these circumstances excessive depth is necessary to activate the knee stabilizers and posterior chain all of which would have been fully activated throughout the entire motion if in fact proper 90 degree or parallel squat mechanics were employed.
In essence activating the posterior chain during squats is critical for protecting the knees and surrounding joints. This can be done either by properly hinging throughout the entire motion of a biomechanically sound parallel squat (which requires adequate coaching) or by employing excessive depth, which promotes inflammation, spasticity, dysfunction, and faulty mechanics.
To summarize, the biggest factor that dictates posterior chain activation during squats (as well as other lower body movements) is not depth but instead is ample hip hinge mechanics.
Although the above discussion highlighting numerous flaws in current kinesiology research methods may help relay the aforementioned points to many individuals, some skeptics will need further scientific support for the notion that 90 degree squats are in fact ideal. With that said there is in fact substantial research supporting this although it’s likely these studies were not without their own set of flaws.
Recent studies examining squat depth further support the concept of optimal range of motion and 90 degree joint angle mechanics. Strength coaches have long held the belief that larger ranges of motion, significantly greater than 90-degree joint angles, such as ass-to-grass squats, are ideal for building strength, size, and power output in athletic populations, mainly because of the difficulty of the task and the soreness associated with it. However, a recent study comparing the effect of training at different squat depths on joint angle specific strength, as well as transfer to sprint and jump performance, found that both partial squats (slightly less than 90 degrees) and parallel squats (slightly greater than 90 degrees) significantly improved vertical jump performance, with slightly greater improvement observed in the partial squat training group, while far less transfer was found from the deep squat training protocol (significantly greater than 90 degrees) to sprint or vertical jump performance [8]. In other words, deep or ATG squat training improved individuals’ ability to perform ATG squats but did not appear to enhance other sports related performance attributes. In contrast, the groups that trained at squat joint angles closer to 90 degrees produced superior results with significant improvements in jump and sprint performance. Perhaps the best results would have occurred had the researchers used a group that employed exactly 90 degree joint angles rather than slightly above or below. Obviously additional research is warranted.
Many strength coaches and practitioners will still argue that performing movements with greater ROM, such as ATG squats or squats well in excess of 90 degree joint angles, produce more muscle activation and ultimately greater long-term benefits in terms of strength and hypertrophy. Even if this were true (which it is not), the gains in strength and hypertrophy would not outweigh the negative ramifications associated with the disruption of optimal body mechanics, or the structural damage and inflammation of the surrounding joints. The notion that deeper squats or a greater range of motion on any movement produces more muscle activation is quite inaccurate, as shown in a number of research studies that not only invalidate this myth but, in fact, suggest quite the opposite.
Studies have shown that not only is excessive squat depth unnecessary, 90 degree joint angle mechanics are ideal, both biomechanically and structurally, as well as neuromuscularly, in terms of muscle activation and motor unit recruitment. In fact, contrary to what has incessantly been preached in the strength conditioning industry, a recent study that examined the effects of squat depth on muscle activation, showed that moving significantly past 90 degree joint angles or parallel positions did not produce greater muscle activation [12].
Yet another study of squat depth and its effect on muscle activation, described even more profound results. In this particular study the researchers examined 3 different squat depths: significantly above 90 degrees (20 degrees of knee flexion), exactly at 90 degrees, and significantly deeper than 90 degrees (approximately 140 degrees of knee flexion) [13]. While most practitioners would have predicted that the deepest squats (140 degree joint angle) would produce the greatest muscle activation in the quadriceps and gluteal muscles due to the greatest degree of stretch, the results indicate the exact opposite. More specifically, 90-degree joint angle squats appeared to produce the greatest muscle activation in the thighs and glutes, followed by the short or partial squat group (20 degrees of knee flexion), with the deep squat group (140 degrees of knee flexion) producing the least activity in the lower body musculature. It should also be noted that glute activity was unusually low in the deep squat group (140 degree) relative to the other groups, further contradicting the common, yet false belief, that deeper squats are ideal for glute development. In reality, they’re quite inferior when compared to proper squats at approximately 90 degree joint angles.
A similar study showed that incorporating partial squats with a range of motion of approximately 90 degrees of knee flexion in maximal strength training, produced superior results in terms of dynamic and isometric measures of maximal strength, as compared to performing only full ROM squats with a larger range of motion (i.e. 120 degrees) [14]. Ironically, the group that performed partial squats not only improved their ability to produce force at 90-degree angles but also at larger 120 angles. In other words, it appears that using optimal 90 degree joint angle mechanics may increase strength and force production at larger joint angles, such as 120 degrees, even more so than training exclusively at these larger joint angles. This is likely due to the increased motor unit recruitment and improved body mechanics associated with approximately 90 degree joint angles, which increases strength and muscularity to a far greater degree than does collapsing and using excessive range of motion.
Simply put, the results of these studies, as well as others highlighted in prior sections, indicate that 90 degree joint angles represent the optimal biomechanical positions not only in terms of producing and absorbing force, and protecting the joints, but also in terms of producing the highest levels of muscular recruitment. In other words, due to the greater levels of motor unit recruitment and leverage, the muscles are not only in the ideal position to produce optimal force and torque, the 90-degree joint angles are also the safest on the joints due to the fact that the muscles are firing at maximal levels (a key component of shock absorption) thereby taking the greatest amount of stress off the joints and connective tissue. Additionally, these results suggest that from a functional strength and hypertrophy perspective, 90-degree joint angles are ideal for maximizing size and force production due to the improved ability to recruit more muscle fibers, a prerequisite for optimizing muscle growth.
Lastly, it should be noted that in many of the previously mentioned squat studies a consistent trend becomes apparent when comparing joint angles greater and less than 90 degrees. For instance, in nearly every case it appears that while 90 degree joint angles are optimal, going significantly beyond 90 degrees (deep squat) seems to produce far inferior results compared to stopping short (partial squats) by nearly all measures, including muscle activation, force production, performance, jump height, and power output. This is likely indicative of some deeper and more profound physiological response such as neurological inhibition and autogenic inhibition. Simply put, stopping short of 90 degree joint angles may not fully maximize muscle activation by simply limiting the degree of motor unit recruitment. However, going significantly beyond 90 degree joint angles appears to breach our body’s optimal range of motion, producing varying degrees of inhibitory signals, neurological shutdown, proprioceptive distortion, and sensory interference. These results suggest that stopping short of 90 degrees is far superior than going significantly beyond it.
Answer is posted for the following question.
Answer
Attached to the neck , where the tuner pegs are located Bridge Pins On most acoustic guitars , there are pins on the bridge that hold the strings in place
Answer is posted for the following question.
How to hold electric guitar neck?
Answer
As in previous years, each Superstar in WWE 2K19 comes equipped with their own set of OMG Moments and Skills, special scenario-specific moves which can be freely modified.
WWE 2K19 features several updates in this department, such as "Break-Out Finisher" replacing the outdated "Steel Cage Superplex" to go with the revamped Steel Cage mechanics. New OMG Moments also include a Coast To Coast, the possibility of assigning the Triple Powerbomb to anyone (the move was previously only available when using The Shield), and more.
Other changes see "Ring Escape" now being moved to Skills (was an Ability in previous games), "Nosebleed Daredevil" combining previous Cage/Chamber/Semi-Trailer diving skills into one, and the removal of "Second Finisher" - with now everybody being able to have two finishers assigned.
Here below you can find the full list of WWE 2K19 OMG Moments & Skills available. The newest additions are marked with "NEW".
*This skill can only be executed once per match
NOTE: There is no limit on how many Skills can be assigned, but a few OMG moments can't co-exist with each other if they are triggered from the same position.
Answer is posted for the following question.
How to jump off cage wwe 2k19?
Answer
for index, row in df.iterrows():
print(row[c1], row[c2])
Source: Geeks For Geeks
Answer is posted for the following question.
How to pandas each row? (Python Programing Language)