Ask Sawal

Discussion Forum
Notification Icon1
Write Answer Icon
Add Question Icon

How to create empty df?

2 Answer(s) Available
Answer # 1 #

DataFrame is a container class that stores and manipulates two-dimensional data organized in tabular format within the python data analysis library 'Pandas'. The data, rows, and columns are the three main components of a Pandas DataFrame. You can store different types of elements in each column of DataFrame. For instance, one column of a DataFrame can have all its elements as integers, while another column can have all its elements as string literals. However, you can make use of the attribute name 'dtype' and return the object type of the column. Oftentimes, to save memory, we may want to build an empty DataFrame. If you simply want to add records with two values rather than the entire DataFrame, for example, you can construct an empty DataFrame first and then append the values one by one. In this article, you will learn how to create an empty DataFrame in python using pandas. We'll also talk about how to fill it with data later by adding rows or columns. So, let’s get started!

Below are the three methods by which you can create an empty DataFrame in pandas:

You can create an empty dataframe by importing pandas from the python library. Later, using the pd.DataFrame(), create an empty dataframe without rows and columns as shown in the below example. Note that the DataFrame() class available in the pandas library is similar to the constructor which is used to construct the class.

For example:

Output:

The second method is to create an empty dataframe with only columns in it. Later, to complete the DataFrame and add data into it, you can create and append the rows using the in-built append() method as shown in the below example.

For example:

Output:

Another method is to create the empty dataframe using columns and indices in it. As the indices are passed while creating the DataFrame, you can easily append the rows using the loc() function. It helps to retrieve data values from a dataset that are fitted in particular rows and columns based on index value passed. Check out the below example for a better understanding.

For example:

Output:

[4]
Edit
Query
Report
Léonide Seeley
Pointsman
Answer # 2 #

DataFrame is a container class that stores and manipulates two-dimensional data organized in tabular format within the python data analysis library 'Pandas'. The data, rows, and columns are the three main components of a Pandas DataFrame. You can store different types of elements in each column of DataFrame. For instance, one column of a DataFrame can have all its elements as integers, while another column can have all its elements as string literals. However, you can make use of the attribute name 'dtype' and return the object type of the column. Oftentimes, to save memory, we may want to build an empty DataFrame. If you simply want to add records with two values rather than the entire DataFrame, for example, you can construct an empty DataFrame first and then append the values one by one. In this article, you will learn how to create an empty DataFrame in python using pandas. We'll also talk about how to fill it with data later by adding rows or columns. So, let’s get started!

Below are the three methods by which you can create an empty DataFrame in pandas:

You can create an empty dataframe by importing pandas from the python library. Later, using the pd.DataFrame(), create an empty dataframe without rows and columns as shown in the below example. Note that the DataFrame() class available in the pandas library is similar to the constructor which is used to construct the class.

For example:

Output:

The second method is to create an empty dataframe with only columns in it. Later, to complete the DataFrame and add data into it, you can create and append the rows using the in-built append() method as shown in the below example.

For example:

Output:

Another method is to create the empty dataframe using columns and indices in it. As the indices are passed while creating the DataFrame, you can easily append the rows using the loc() function. It helps to retrieve data values from a dataset that are fitted in particular rows and columns based on index value passed. Check out the below example for a better understanding.

For example:

Output:

[0]
Edit
Query
Report
Mandeep Saeed
BRASS WIND INSTRUMENT MAKER